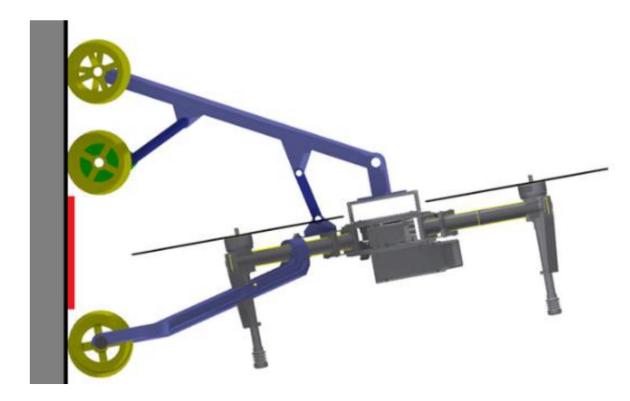


RoNik UT Drones highlights

Highlights:

- Reduced HSE risk by mitigating work at height and confined space entry.
- · Reduce (scaffolding) costs.
- Lower downtime of assets.
- Easy deployment, faster data gathering full API653 grid of 300 points executed in <1 day.
- Certified measurements at 0,1mm accuracy validated by Level 2 NDT engineer.
- Detailed monitoring of measurements live on screen.
- No permits from aviation authority needed for indoor flying.
- No weather dependency when flying indoors.



RoNik UT Wall drone

How does the proces work?

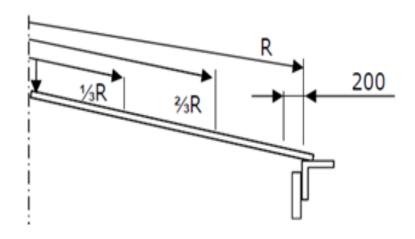
The process:

- Certified wall thickness meter manufactured by Eurosonic \ Mistras
- Outer wheels seat the drone and a tilting mechanism pushes the sensor firmly to vertical walls.
- Flexible arm ensures perfect alignment of UT probe with tilted roof plates.
- A couplant gel ensures optimal contact with the wall during the collection
- Live video feed plus wall thickness testing in order to assure quality collection
- Optimize UT parameters ("gains" and "gates" during flight)
- UT Data is validated by certified level 2 NDT engineer

Schematic view of the tilting mechanism

Example use case tank shell

EEMUA159\API653 tank shell measurements:


- Scan 4, 8 or more vertical lines of the shell.
- Take measurements on each wall plate on:
 - 30 cm from bottom
 - 1\3 of the plate
 - 2\3 of the plate
- Optional: take 3 measurements within a 10cm area and take average as result
- Max reporting precision: 0,1mm
- UT sensor shows data at 0,01mm

Example use case roof plates

EEMUA159\API653 tank roof measurements:

- Scan 4, 8 or more vertical lines of the roof.
- Take measurements on each line on:
 - 20 cm from shell
 - 1\3 of scan line
 - 2\3 of scan line
 - In the center of the roof (crown)

Reporting

Reporting:

- Measurement data is noted by certified level 2 NDT engineer.
- Measurement data can be stored in local database.
- RoNik reporting standard.
- Clients reporting standard can be used as well.

US WANDINSPECTIE B-7

4 juli 2018 Inspectiedatum M. Zwijnenburg Inspecteur Gebruikte apparatuur Sonatest 150s Taster / Referentieblok RVS 1-20 mm 20 graden celcius Oppervlakte temperatuur Koppelmiddel EEMUA-159

Maasvlakte Rotterdam Locatie

Tank nummer 22010 16.5 meter Tank diameter (m) 17.0 meter Tankwand hoogte (m) Origineel dikte wand 6.0 mm

: om de 15 m

Onderzoek uitvoering:

D ≤ 20 m Gemeten / Geverifieerde laagdikte coating (mm) 20 m < D < 36 m

Onderzoeksprocedure

Zie tekening onder tabel voor scan locaties de onderste ring tellend naar boven tot en met ring 9 D > 36 m Aantal punten / plaat: 30 cm van bodem

> 1/3 van bodem 2/3 van bodem

Aantal meetlijnen:

		Verticale meetlijnen (scans) in 0.1 mm precisie									=										
			-				-	_			, , , ,		-								
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ring 9	2/3	5,9	nvt	5,9	nvt	5,9	nvt	5,9	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt
	1/3	5,9	nvt	6,0	nvt	5,9	nvt	5,9	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt
	30 cm	5,9	nvt	5,9	nvt	5,9	nvt	5,9	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt
	2/3	6,0	nvt	5,9	nvt	5,9	nvt	6,0	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt
Ring 8	1/3	6,0	nvt	5,9	nvt	6,0	nvt	6,0	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt
	30 cm	6,0	nvt	5,9	nvt	5,9	nvt	6,0	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt
	2/3	5,9	nvt	5,9	nvt	5,9	nvt	5,9	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt
Ring 7	1/3	6,0	nvt	6,0	nvt	5,9	nvt	6,0	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt
	30 cm	5,9	nvt	5,9	nvt	5,9	nvt	5,9	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt
	2/3	6,0	nvt	5,9	nvt	5,9	nvt	6,0	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt
Ring 6	1/3	5,9	nvt	5,9	nvt	5,9	nvt	5,9	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt
	30 cm	5,9	nvt	5,9	nvt	5,9	nvt	5,9	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt
	2/3	6,0	nvt	5,9	nvt	6,0	nvt	6,0	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt
Ring 5	1/3	6,0	nvt	6,0	nvt	6,0	nvt	6,0	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt
	30 cm	6,0	nvt	6,0	nvt	5,9	nvt	6,0	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt
	2/3	5,9	nvt	5,9	nvt	5,9	nvt	5,9	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt
Ring 4	1/3	6,0	nvt	5,9	nvt	5,9	nvt	6,0	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt
	30 cm	6,0	nvt	5,9	nvt	5,9	nvt	6,0	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt
	2/3	6,0	nvt	5,9	nvt	5,9	nvt	6,0	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt
Ring 3	1/3	5,9	nvt	6,0	nvt	5,9	nvt	5,9	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt
	30 cm	5,9	nvt	5,9	nvt	5,9	nvt	5,9	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt
Ring 2	2/3	5,9	nvt	5,9	nvt	5,9	nvt	5,9	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt
	1/3	5,9	nvt	5,9	nvt	5,9	nvt	5,9	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt
	30 cm	5,9	nvt	5,9	nvt	5,9	nvt	5,9	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt
	2/3	5,9	nvt	6,0	nvt	5,9	nvt	5,9	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt
Ring 1	1/3	6,0	nvt	6,0	nvt	6,0	nvt	5,9	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt
	30 cm	5,9	nvt	5,9	nvt	5,9	nvt	6,0	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt	nvt

What is it?

Diameter	22" (fits through standard manhole)				
Frame type	Quadcopter				
Flight computer	216MHz STM32F722RET6 MCU with barometer				
IMU	32K ICM20602 chip				
Weight	3 Kg				
Control	Manual control by operator at ground station				
Max flight height	40 Meters				
Flight time	15 minutes (using an battery-carousel, unlimited flight time is				
N/ 10	possible)				
Voltage	22 Volts				
Radio frequency	2,4Ghz and 5.8Ghz				
Failsafe	Redundant setup				
	 Auto soft-land when communication fails 				
	 Auto soft-land at critical low battery 				
Measuring speed	Max 300 measurements per day				

Payload

The RoNik UT Wall drone utilises a Eurosonic UTC 110 wall thickness meter.

Manufactured	Eurosonic		
Туре	UTC110		
Accuracy	0,1mm		
Control	Live data feed of the full UT graph on ground station		
Gel capacity	100 milliliters		
Scans types supported	A, B or C (when mounted on the drone only A scan)		
Usable surfaces	Vertical walls, horizontal ceilings		
Probe	All normal probe types can be used		

Technical specs UT sensor

TECHNICAL SPECIFICATIONS

General information					
Operating principle	Ultrasonic refection method				
US channels	P-R / T-T				
Encoder inputs	2 or 4 encoders				
Display	A, B or C-scan				
Liaison and communication	USB 2.0				
Compatible	XP, Vista, Seven, Windows 8				
Software	EuroscanV, UTWIN, API EurosonicUT				
Consumption	3 W (USB)				
Dimensions	86 x 54 x 22.5 cm				
Protection class	IP 65				

Pulser	
Туре	Negative pulse
Impedance	50 ohm
PRF max	10 kHz
Emission Voltage	10 to 280 V
Emission Width	20 to 400 ns (résolution 5 ns)
Fall Time / Rise Time	4.8ns / 5.2ns

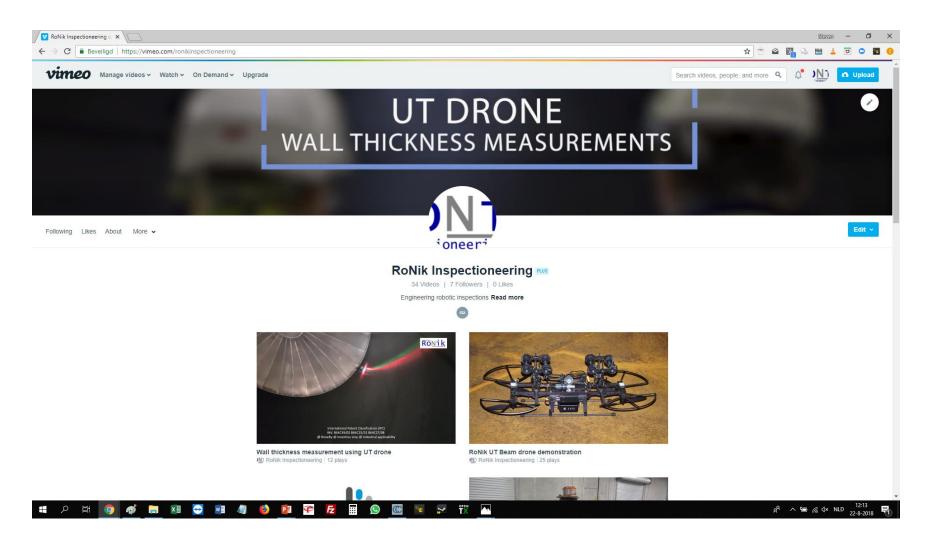
Receiver	
Input Impedance	50 Ω
Bandwidth	0.9 to 22 MHz (-3dB)
Insulation	P/R – T/T
Amplification	0 to 88dB
Averaging (hard)	2, 4, 8, 16
Digitizing	25 / 50 /100 MHz 12 bits
Digital filtering	RIF 32 coefficients

TCG	
Max point number	256 points
Accuracy	10ns, 0.1dB
Maximum slope	40dB/µs

Moniteurs	
Monitor Number	3
Configuration	0 -> 160ms
Strategies	Absolute Max / threshold / 1st echo
Polarity	positive, negative, double

Echo Start	
Configuration	0 -> 160ms
Strategies	Zero before / zero after / peak / threshold crossing
Polarity	Positive, negative, double

Acquisition	
Synchronization type	Internal: 10Hz to 10 kHz
	External : on encoder position
Encoder synchronization accuracy	2 to 65535 encoder step
Maximum acquisition frequency	10000 acquisition/s
Maximum data rate during acquisition	15 Mo/s


Setup and operations

- Two person team:
 - Drone operators
 - UT sensor operator
- Preparations:
 - 1. Drawing of object
 - 2. What material
 - 3. What expected thickness
 - 4. Cleanliness
- Drone setup:
 - 1. Unfold arms
 - 2. Mount propellors
 - 3. Mount bottom tilting arms
 - 4. Set angle top arm
 - 5. Mount the right UT probe
 - 6. Fill gel cannister
 - 7. System startup
 - 8. Calibrate UT sensor
 - 9. Test UT probe
 - 10. Take measurements

The RoNik UT Roof drone ready for take-off

Videos

See our vimeo channel: https://vimeo.com/ronikinspectioneering

Reference clients

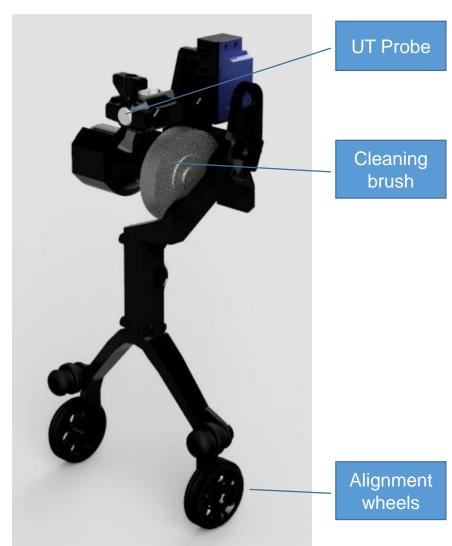
Energy lives here

inter terminals

Limitations

- No ATEX certification. Tank needs to be clean and gas-free.
- If tank is heavily corroded, UT measurements are not possible (see photo).
- For outdoor use:
 - Max wind 3m\s.
 - No GPS.
- Cleaning mechanism in under development (Q1 2019).
- Only vertical walls and roof plates, H beams are under development (Q1 2019)

Example of a surface that cannot be measured with the RoNik UT drones


Cleaning mechanism

The cleaning mechanism allows the surface to be cleaned before taking UT measurements.

Highlights:

- New measurement arm on top bar
- Integrated steel brush
- UT sensor in rubber O ring
- Steel brush and UT sensor can turn
 90 degrees in <1 second
- Protection of steel particles

Status: testing phase. Available from Q1 2019.

UT H-Beam drone

The RoNik UT Beam drone allows for visual and UT inspection of H beams.

Highlights:

- Patented gripping arms enable this drone to attach itself to an H or I beam.
- Drone engines can be turned off when attached to beam.
- Capable of visual inspection and UT measurements.
- Prepared for non-entry use.

Status: testing phase Available in Q1 2019.

Video: https://vimeo.com/290357142

